Synthesis of Vitamin-B₁₂ Derivatives with Peripheral Tris(oxyethylene) Chains

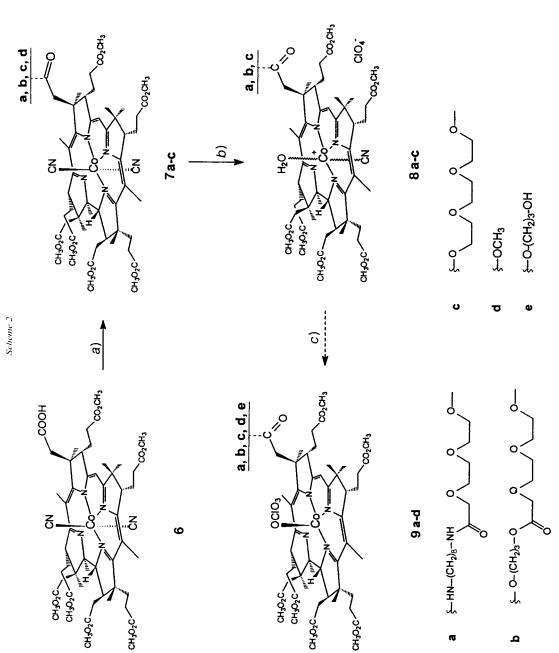
by Michael J. Pfammatter, Tamis Darbre*, and Reinhart Keese*

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern

The new derivatives 7a-c, of vitamin B_{12} , with a peripheral tris(oxyethylene) chain linked to the corrin ring by an amide or ester group, are prepared, and their ligand-exchange reactions are investigated. Upon reduction of the aqua-cyano complexes 8a-c with NaBH₄, cleavage of the 'outer' ester and amide group is observed.

Introduction. – We are interested in models for vitamin- B_{12} -dependent rearrangements that mimic the apoenzyme-substrate interaction [1–6]. In our first model, the vitamin- B_{12} derivative catalyst and the substrate were modified by aliphatic side chains for association with each other by noncovalent interactions in appropriate solvents [7][8]. It has been shown that this peripheral association between the catalyst and the substrate enhances the methylmalonyl-succinyl rearrangement in aqueous methanol. In the adenine-thymine model, it has been demonstrated that the base pairing, used as recognition and binding sites, leads to increased rearrangement in a nonpolar solvent [9]. A new model system has been designed for cation-mediated association between poly-(oxyethylene) groups (podands) attached to the vitamin- B_{12} -derived catalyst and the methylmalonyl substrate. In this way, the association might be controlled by the presence of cations, bringing the reactive site of the substrate and the catalytic Co-centre in close contact to each other enhancing the reactivity and – in our case – rearrangement.

Cations chelate with podands; however, their association is weaker than with crown ethers or cryptates [10][11]. These strong chelating compounds have been extensively studied in the context of enzyme models [12], whereas polyethers have found less attention in the design of bioorganic functions [13]. In our podand model, the association between the two tris(oxyethylene) moieties is assumed to lead to binding prior to the interaction between the Co-centre and the reactive site of the substrate. The complexation might be at its maximum, when the bromomethyl-methylmalonyl substrate is covalently bonded to the Co-centre (*Fig. 1*).


As a first step towards a model where peripheral association between the substrate and the catalyst is controllable by cations, we describe here the synthesis of vitamin- B_{12} derivatives $7\mathbf{a} - \mathbf{c}$ containing different tris(oxyethylene) side chains, their ligand-exchange reactions, and the unexpected reactivity of $8\mathbf{a} - \mathbf{c}$ with NaBH₄ in MeOH.

Results and Discussion. – *Syntheses*. The podand-bearing amino amide **2** and hydroxy ester **3** were prepared by condensation of 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (1; activated by reaction with dichloro(methoxy)methane [14]) with the diamine **4** and the diol **5**, respectively (*Scheme 1*).

Fig. 1. Podand model and covalent interaction between substrate and Co-centre

The amino amide **2** and the hydroxy ester **3** were then attached to the cobester c-monoacid **6** (= dicyanocob(III)yrinic acid a,b,d,e,f,g-hexamethyl ester) via the mixed anhydride formed with 2,2,2-trichloro-1,1-dimethylethyl carbonochloridate to give 88 % of **7a** and 40 % **7b** (*Scheme 2*).

Alternatively, the condensation could be achieved with EDC/DMAP (*N*-[3-(dimethylamino)propyl]-*N*'-ethylcarbodiimide/4-(dimethylamino)pyridine) [15][16], giving the compounds **7b** and **7c** in yields of 58 and 64%, respectively. The new vitamin-B₁₂ complexes **7a**-**c** were identified by ¹H- and ¹³C-NMR, IR, and electrospray ionization (ESI) mass spectrometry [17].

In the ¹H-NMR of **7a**, the signal of H-C(10) appears at 5.52 ppm and lies within the narrow range observed for dicyanocobyrinates (Fig. 2). The two signals at 6.95 and 6.99 ppm are due to the H-atoms of the two amide functions and can be slowly exchanged in CD₃OD. The ESI-MS (positive mode) of **7a** gives a peak at m/z 1335 assigned to $[M-CN]^+$ (Fig. 3). Expansion of this signal gave the expected isotope distribution. A doubly charged peak at m/z 668 can be assigned to $[MH-CN]^{2+}$. Similarly, **7b** shows a peak at m/z 1266.8, assigned to

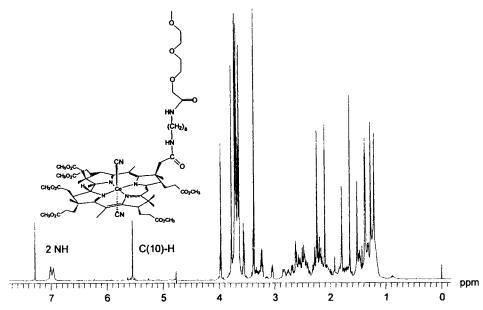


Fig. 2. ¹H-NMR Spectrum (500 MHz, CDCl₃) of Coα,Coβ-di(cyano-κC)-N^c-(10-oxo-12,15,18-trioxa-9-azonon-adec-1-yl)cob(III)yrinic acid-c-amide a,b,d,e,f,g-hexamethyl ester (7a)

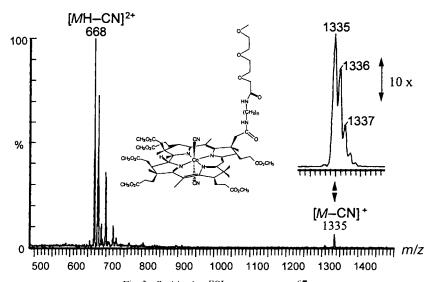
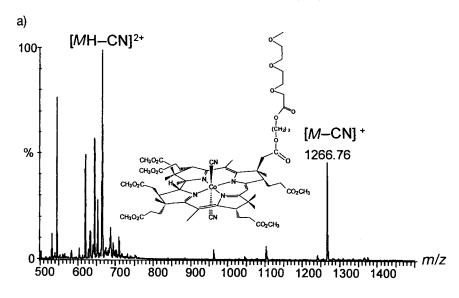



Fig. 3. Positive-ion ESI mass spectrum of 7a

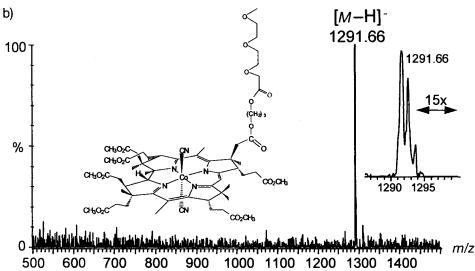


Fig. 4. a) Positive-ion and b) negative-ion ESI mass spectrum of 7b. Matrix: MeCN/H2O 1:1 with 2% Et3N.

 $[M-CN]^+$ and a doubly charged peak at m/z 634.4 for $[MH-CN]^{2+}$ (Fig. 4, a). The mass of 7b is further apparent from the corresponding negative-ion ESI-MS, which shows only a peak at m/z 1291.7 for $[M-H]^-$ (Fig. 4, b). Apart from the peak for $[M-CN]^+$ at m/z 1194.7, no other peaks are observed for 7c (Fig. 5).

Ligand Exchange. Treatment of the dicyano complexes $7\mathbf{a} - \mathbf{c}$ with 30% HClO₄ solution gave the corresponding aqua-cyanocobyrinates $8\mathbf{a} - \mathbf{c}$ as a mixture of the $Co\alpha$ -and $Co\beta$ -coordination isomers (Scheme 2). The presence of these two isomers was confirmed by the presence of two sets of signals appearing in the ¹H- and ¹³C-NMR spectra for each of the complexes $8\mathbf{a} - \mathbf{c}$.

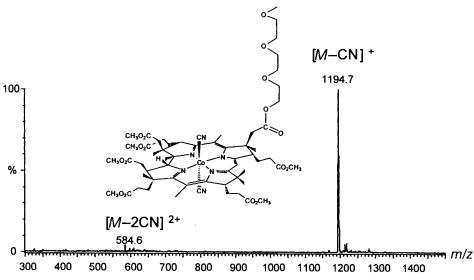
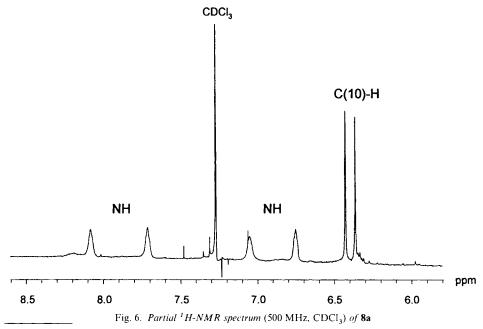



Fig. 5. Positive-ion ESI mass spectrum of 7c

An interesting feature was observed in the ${}^{1}\text{H-NMR}$ spectra of the aqua-cyano complex 8a. Due to the two stereoisomers $(Co\alpha/Co\beta)$, the signal of H-C(10) appears as 2s at 6.36 and 6.42 ppm. Although 4 signals are expected for the 2 amide groups, the large chemical shifts of 2 of these 4 signals are unexpected (Fig. 6). These 4 H-atoms were completely exchanged upon vigorously shaking a solution of 8a in CDCl₃ with D₂O for 2 min. Treatment with H₂O restored the 4 ${}^{1}\text{H-NMR}$ peaks ${}^{1}\text{L}$).

 In contrast to this fast exchange, the amide protons in the dicyano complex 7a were not exchanged under these heterogeneous conditions.

Reduction $Co^{III} \rightarrow Co^{I}$. To prepare the Co^{II} perchlorates $\bf 9a-c$, the aqua-cyanocobyrinates $\bf 8a-c$ were reduced with NaBH₄ and subsequently treated with HClO₄. According to the ESI- and FAB-MS, the aqua-cyano complex $\bf 8a$ gave the expected (perchlorato)cobalt(II) complex $\bf 9a$. In addition to the parent peak at m/z 1335, peaks are detected at m/z 1020.3 for a singly charged species and at m/z 510 for a doubly charged species. These peaks are assigned to products formed by cleavage of the side chain at the outer functionality.

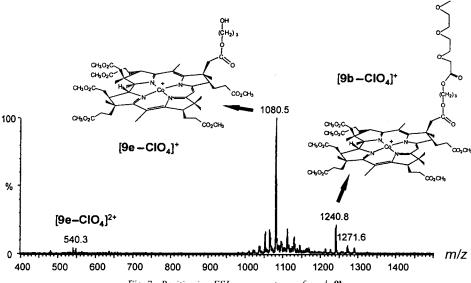


Fig. 7. Positive-ion ESI mass spectrum of crude 9b

In the reaction of complex **8b**, first with NaBH₄ and subsequently with 30% HClO₄ solution, the expected (perchlorato)cobalt(II) complex **9b** could only be detected as a minor product in the ESI-MS (*Fig.* 7). The major peak at m/z 1080.5 and m/z 540.3 can be assigned to $[9e - \text{ClO}_4]^+$ and $[9e - \text{ClO}_4]^{2+}$, formed by cleavage of the trioxade-canoic-acid moiety.

In the case of 8c, where the polyether group is attached to the carboxylic group of 1 without a spacer, the expected complex 9c is cleanly formed under identical conditions (Fig. 8). The small peak at m/z 1036.6 observed in the ESI-MS is assigned to the heptamethyl cobester derived ion $[9d - \text{ClO}_4]^+$, most likely formed by transesterification, the remaining ESI-MS peaks are identical with those of complex 9d prepared independently.

The presence of Co^{I} is necessary for the cleavage of the outer ester group of **8b**. Indeed, when the dicyano cobester **7b** – which is very slowly reduced to Co^{I} under the reaction conditions used – was treated with NaBH₄ in MeOH followed by 30% HClO₄ solution, the ESI-MS revealed that the original corrin structure had remained intact, with only traces of m/z 1080.5 being detected for the $[M - ClO_4]^+$ ion of the cleavage product **9e**. This implies that the hydrolysis of the outer ester group is not due to complexation of the podand with Na⁺ ions in MeOH. To exclude the Co^{I} -induced ligand

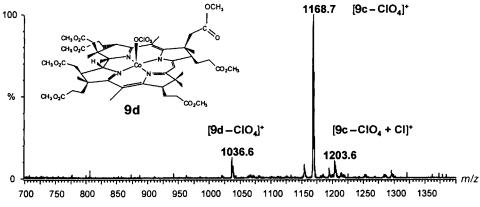


Fig. 8. Positive-ion ESI mass spectrum of 9c

labilization with a subsequent reduction to Co^I, the dicyanocobester **7d** was stirred in MeOH for 5 min with vitamin B_{12s}, obtained by reduction of hydroxycobalamin with NaBH₄. No ligand exchange or reduction of **7d** could be detected under these conditions. Thus, we suggest that the reaction of the outer amide or ester group occurs by an intramolecular process, with the corrinatocobalt(I) acting as a supernucleophile towards the outer carbonyl group leading to an acyl-Co complex. The acyl complex can then be homolytically cleaved to generate the acyl radical and Co^{II} or it can react with MeOH to give the corresponding methyl ester and Co^I. In the case of **8c** without an alkyl spacer, the intramolecular reaction is not favoured, and the Co^{II} complex **8c** can be obtained. The ester functionality of **8b** is more easily cleaved than the amide group present in **8a**, and the octyl spacer thereof might further reduce the intramolecular hydrolysis.

Concluding Remarks. – Vitamin- B_{12} derivatives with a polyether side chain are readily prepared. In the course of the preparation of Co^{II} complexes via Co^{I} intermediates, the outer ester moiety in 8b and the amide group of 8a are cleaved to a major and minor extent, respectively. There is precedent for reduction of methyl esters with $NaBH_4$ [18]. However, these reactions have been performed in refluxing MeOH, and the esters which underwent such reductions contained neighbouring functional groups. Electrospray mass spectrometry (ESI-MS) was used to identify the new compounds and was found to be a useful tool for the characterization of vitamin- B_{12} derivatives. Further studies for understanding the observed cleavage reactions are under way, with the aim to optimize the syntheses of the desired catalysts.

This work has been supported by the *Bundesamt für Bildung and Wissenschaft*. Bern (project BBW No. 950606) within the *European Research Program TMR* (contract No. ERBFMRXCT 960018) and the *Swiss National Science Foundation* (project No. 20-43565.95). We thank Dr. *J. Schaller* for the access to the ESI-MS instrument and for technical assistance.

Experimental Part

General. The reactions were carried out with reagents and solvents of puriss, grade from Fluka under Ar. The solns, were degassed by sonication under reduced pressure. Flash chromatography (FC): distilled commercial-grade solvents; silica gel (30-60 µm) from Baker (analysed reagents). TLC: Merck-F-254 precoated sheets,

visualization by 5% phosphomolybdic acid hydrate/EtOH or by UV. Eluent for FC and TLC: if not stated otherwise, CH₂Cl₂/MeOH (0.1% HCN) 10:1. UV/VIS: Hewlett-Packard 8451 A; $\lambda_{max}(\varepsilon)$ in nm. IR: Perkin-Elmer PE 782; CHCl₃ soln. in 0.2-mm path NaCl cells; in cm⁻¹. NMR: Bruker-AC-300 (¹H, 300 MHz; ¹³C, 75 MHz) and Bruker-AC-500 (¹H, 500 MHz; ¹³C, 125 MHz); δ in ppm rel. to CDCl₃ (δ (H) 7.24, δ (C) 77.00) in Hz; ¹³C multiplicities from DEPT spectra. MS: Varian MAT-CH-7A, 70 eV; in m/z (%). LSI-MS: Fision Autospec-Q; acceleration voltage 8 kV, ionization Cs⁻ (32 keV); matrix: dithiothreitol (DTT)/dithioerythriol(DTE); in m/z (%). ESI-MS: Fisions Instrument VG Platform II; positive-ion measurements (3.5 kV) and negative-ion measurements (2.5 kV); in m/z (%) in the solvents given. Acronyms: DMPA, 4-(dimethylamino)pyridine; EDC · HCl: N-[3-(dimethylamino)propyl]-N'-ethyl-carbodiimide hydrochloride.

Cyclic Voltammetry: Potentiostat AMEL 553; reference electrode Metrohm 6.0724.000 (SCE), electrolyte bridge Metrohm 6.1231.000 and 6.1227.000; working electrode Metrohm 6.0804.010 (glassy carbon electrode, pretreated by mechanical polishing with Al_2O_3 Metrohm 6.2802.000); auxiliary electrode was a Pt wire; scan rates $100 \, \mathrm{mVs^{-1}}$; E in V. The solns. were deoxygenated by passing a stream of Ar (purified over a BASF-BTS catalyst) through the soln.

Coa,Co β -Di(cyano- κ C)cobyrinic Acid a,b,d,e,f,g-Hexamethyl Ester (6). The procedure described in [19][20] was modified: N-Bromosuccinimide (5×0.52 g, 3.0 mmol) was added in five portions to a stirred soln. of crystalline vitamin B₁₂ (15.88 g, 12.18 mmol) in 2M aq. AcOH (1 l) over 2 h in the dark. After $3\frac{1}{2}$ h stirring at r.t. in the dark under Ar, the solvent was evaporated. To the residue, taken up in MeOH (400 ml) and sonicated for 10 min under Ar, a soln. of conc. H₂SO₄ in 100 ml MeOH was added. The soln. was degassed, then slowly heated to gentle reflux, and stirred for 5 days (oil bath: 80°). The mixture was concentrated to 80 ml and taken up in H₂O and ice (400 ml). Upon addition of solid NaHCO₃, (\rightarrow pH 7) and KCN (1.4 g, 21.5 mmol), the colour changed from red to dark-violet. After extraction with CH₂Cl₂ (3 × 200 ml), the combined org. phase was dried (Na₂SO₄) and evaporated and the residue submitted to FC: 9.5 g (70%) of cobester-c-lactone containing a small amount of heptamethyl $Co\alpha$, $Co\beta$ -di(cyano- κ C)cobyrinate (9d): R_f 0.73. To a degassed soln. of crude cobester-c-lactone (1.12 g, 1.03 mmol) in toluene (60 ml) and conc. AcOH (10 ml), activated Zn (3 g, 45.9 mmol) was added under Ar [21]. After stirring at r.t. for 30 min, the colour changed to brown and brown-green. The mixture was treated with 1M phosphate buffer (pH 7; 200 ml) and KCN (1.4 g, 21.5 mmol) and filtered. After extraction with CH₂Cl₂ (350 ml), the combined org. phase was filtered over Celite and evaporated and the residue submitted to FC: 0.89 g (80%) of 6. R_f 0.44.

Coa,Coβ-Di(cyano-κC)-N°-(10-oxo-12,15,18-trioxa-9-azanonadec-1-yl)cob(III)yrinic Acid-c-amide a,b,d,e, f,g-Hexamethyl Ester (7a). Acid 6 (200 mg, 0.186 mmol) was dried by repeated (3 ×) evaporation of a soln. in CH₂Cl₂ (10 ml). To the soln. in CH₂Cl₂ (20 ml) was added 2,2,2-trichloro-1,1-dimethylethyl carbonochloridate (100 mg, 0.4 mmol) and, dropwise, Et₃N (0.19 ml, 14 mmol) at -10° . Attr 10 min at -10° , the soln. was warmed to r.t. and stirred for 1 h. Amine 2 (170 mg, 0.558 mmol) in CH₂Cl₂ (10 ml) was added dropwise and the mixture refluxed for 18 h. After evaporation, the violet residue was submitted to FC: 224 mg (88%) of 7a. $R_{\rm f}$ 0.60. UV/VIS $(c = 1.39 \cdot 10^{-5} \text{ M}, \text{CH}_2\text{Cl}_2)$: 227 (sh, 34892), 278 (8992), 316 (7913), 352 (10790), 370 (sh, 21582), 420 (2230), 508 (4892), 548 (6834), 588 (8633). IR: 3440w, 3360w, 3000s, 2960s, 2940s, 2140w, 1740vs, 1670vs, 1590vs, 1540s, 1510vs, 1440vs, 1410m, 1370s, 1360m, 1210s, 1160s, 1110s, 1020m, 920vs, 790vs, 740vs, 670vs. ¹H-NMR $(500 \text{ MHz}): 1.16-1.83 \ (m, \text{ superimposed } 1.20 \ (s), 1.26 \ (s), 1.36 \ (s), 1.37 \ (s), 1.51 \ (s), 1.79 \ (s), \text{ total } 34 \ H); 1.85-2.62$ (m, superimposed 2.08 (s), 2.21 (s), total 24 H); 2.63 - 3.88 (3m, 3 H); 2.98 - 3.03 (m, 1 H); 3.20 - 3.25 (m, 4 H); 3.36(s, 3 H); 3.53-3.75 (m, 2 H); 3.63-3.77 (m, superimposed 3.64 (s), 3.66 (s), 3.68 (s), 3.70 (s), 3.71 (s), 3.77 (s), total 25 H); 5.52 (s, 1 H); 6.9-7.08 (2m, 2 H). ¹³C-NMR (125 MHz): 15.27 (q); 15.30 (q); 16.86 (q); 18.40 (q); 19.22 (q); 19.71 (q); 21.96 (q); 24.81 (t); 25.69 (t); 25.76 (t); 26.85 (t); 26.90 (t); 29.05 (t); 29.19 (t); 29.25 (t); 29.56 (t); 29.61 (t); 30.73 (t); 30.83 (t); 31.42 (q); 31.72 (t); 32.40 (t); 33.65 (t); 38.81 (t); 39.15 (d); 39.69 (t); 41.58 (t); 46.07 (s); 46.96 (s); 47.24 (t); 51.36 (s); 51.57 (q); 51.59 (q); 51.80 (q); 51.86 (q); 52.38 (q); 53.50 (d); 56.56 (d); 58.42 (s); 58.65 (d); 58.96 (q); 70.14 (t); 70.34 (t); 70.48 (t); 70.89 (t); 71.82 (t); 74.61 (d); 82.59 (s); 91.35 (d); 102.16 (s); 106.67 (s); 161.53 (s); 163.45 (s); 169.45 (s); 169.68 (s); 171.31 (s); 171.48 (s); 171.61 (s); 172.48 (s); 172.83 (s); 173.57 (s); 173.81 (s); 175.31 (s); 175.74 (s); 175.85 (s). LSI-MS (calc. for C₆₈H₁₀₁CoN₈O₁₇: 1361.54): 1334 $(65, [M-CN]^+)$, 1308 $(100, [M-2CN]^+)$, 1293 (3), 1148 (5), 962 (20). ESI-MS $(pos.; MeCN/H_2O\ 1:1,\ 2\%)$ formic acid): 1361 (1, M^+), 1335 (16, $[M-CN]^+$), 702 (35), 679 (58), 668 (100, $[M+H-CN]^{2+}$).

Coα,Coβ-Di(cyano-κC)cob(III)yrinic Acid a,b,d,e,f,g-Hexamethyl c-(5-Oxo-4,7,10,13-tetraoxa-1-tetradec-t-yl) Ester (7b). Analogously to 7a, 6 (700 mg, 0.65 mmol) was dissolved in CH₂Cl₂ (50 ml) and treated with DMAP (200 g, 1.6 mmol) and 3 (460 mg, 1.95 mmol) at 0° . After addition of EDC · HCl (0.4 g, 2.08 mmol), the mixture was stirred for 30 min at 0° and 5 h at r.t. The org. phase was washed with 5% HCOOH soln. (20 ml), sat. NaHCO₃ soln. (20 ml), and 1% KCN soln. (10 ml), dried (Na₂SO₄), and evaporated and the violet residue submitted to FC (AcOEt/CH₂Cl₂/MeOH (0.1% HCN) 10:10:1): 0.485 g (58%) of 7b. $R_{\rm f}$ 0.34 (AcOEt/CH₂Cl₂/MeOH (0.1% HCN) 10:10:1):

MeOH (0.1% HCN) 10:10:1). UV/VIS ($c=1.62 \cdot 10^{-6}$ M, CH_2Cl_2): 232 (sh, 34280), 280 (12520), 316 (10830), 372 (sh, 27350), 424 (4490), 512 (6370), 550 (9370), 590 (11410). IR: 3010w, 2980m, 2960m, 2940w, 2340w, 2140w, 1740vs, 1585m, 1500m, 1445s, 1370m, 1360m, 1200s, 1160m, 1110m, 1020w. 1 H-NMR (500 MHz): 1.16 (s), 1.22 (s), 1.30 (s), 1.34 (s), 1.46 (s), 1.52 (s, total 18 H); 1.60–1.90 (m, 3 H); 1.91–2.75 (m, superimposed 2.14 (s), 2.18 (s), total 27 H); 2.71–2.82 (m, 1 H); 2.98–3.09 (m, 1 H); 3.37 (s, 3 H); 3.41–3.48 (m, 1 H); 3.52–3.79 (m, superimposed 3.63 (s), 3.67 (s), 3.69 (s), 3.70 (s), 3.72 (s), 3.76 (s), total 28 H); 4.11–4.28 (t, superimposed 4.16 (s) and 4.22 (t, J=6.14), total 6 H); 5.58 (s, 1 H). 13 C-NMR (125 MHz): 15.19 (q); 15.88 (q); 16.88 (q); 18.42 (q); 19.13 (q); 19.71 (q); 21.98 (q); 24.87 (t); 25.62 (t); 26.36 (t); 27.83 (t); 29.64 (t); 30.63 (t); 30.96 (t); 31.04 (q); 31.75 (t); 32.49 (t); 33.66 (t); 39.16 (d); 41.03 (t); 42.14 (t); 45.53 (s); 46.96 (s); 48.53 (s); 51.54 (q); 51.55 (q); 51.73 (q); 51.77 (q, 2 × int.); 52.32 (q); 53.52 (d); 53.96 (d); 56.53 (d); 58.24 (s); 58.97 (q); 60.98 (t); 61.10 (t); 68.49 (t); 70.48 (t); 70.57 (t); 70.88 (t); 71.83 (t); 74.70 (d); 82.49 (s); 91.15 (d); 102.14 (s); 103.50 (s); 163.38 (s); 163.45 (s); 170.28 (s); 171.28 (s); 171.67 (s); 171.87 (s); 172.69 (s); 172.88 (s); 173.48 (s); 173.85 (s); 175.18 (s); 175.54 (s); 176.20 (s). ESI-MS (pos. MeCN/H₂O 1:1, 2% formic acid, $C_{63}H_{89}CON_6O_{19}$, calc. 1293.37): 1266.7 (50, $[M-CN]^+$), 633.8 (30, $[MH-CN]^+$). ESI-MS (neg. ion, MeCN/H₂O 1:1, 2% Et₃N): 1291.7 (100, $[M-H]^-$).

Coa,Coβ-Di(cyano-κC)cob(III)yrinic Acid c-{2-[2-(2-Methoxyethoxy)ethoxy]ethyl} a,b,d,e,f,g-Hexamethyl Ester (7c). As described for 7a, with 6 (400 mg, 0.37 mmol), DMAP (90 mg, 0.74 mmol), triethylene glycol monomethyl ether (183 mg, 1.12 mmol), and EDC (220 mg, 1.4 mmol): 293 mg (65%) of 7c. Violet powder. $R_{\rm f}$ 0.34 (AcOEt/CH₂Cl₂/MeOH (0.1 % HCN) 10:10:1). UV/VIS ($c = 7.2 \cdot 10^{-5}$ M, CH₂Cl₂): 234 (sh, 18925). 280 (7350), 318 (590), 372 (sh, 18045), 424 (1876), 510 (2914), 550 (5635), 590 (7290). IR (CHCl₃): 3400w, 2970m, 2920w, 1740vs, 1585m, 1500m, 1440m, 1370m, 1200m, 1150m, 1100m, 1030w. ¹H-NMR (300 MHz): 1.17, 1.22 (2s, total 6 H); 1.31, 1.34 (2s, total 6 H); 1.48 (s, 3 H); 1.54 (s, total 3 H); 1.62-1.92 (m, 3 H); 1.95-2.08 (m, superimposed 2.14 (s), 2.18 (s), total 14 H); 2.31 – 2.82 (m, 13 H); 2.98 – 3.09 (m, 1 H); 3.34 (s, 3 H); 3.41 – 3.48 (m, 1 H); 3.48-3.58 (m, 2 H); 3.58-3.79 (m, superimposed 3.59 (s), 3.63 (s), 3.66 (s), 3.68 (s), 3.73 (s), 3.76 (s), total 27 H); 4.16-4.28 (m, 2 H); 5.55 (s, 1 H). ¹³C-NMR (75 MHz): 15.20 (q); 15.88 (q); 16.87 (q); 18.41 (q); 19.05 (q); $19.77\ (q);\ 21.99\ (q);\ 24.93\ (t);\ 25.66\ (t);\ 26.50\ (t);\ 29.67\ (t);\ 30.68\ (t);\ 31.04\ (t);\ 31.10\ (q);\ 31.77\ (t);\ 32.54\ (t);\ 33.77\ (t);\ 32.54\ (t);\ 33.77\ (t);\ 32.54\ (t);\ 33.77\ (t);\ 32.54\ (t);\ 33.77\ (t);\ 33.$ (t); 39.21 (d); 41.06 (t); 42.20 (t); 45.57 (s); 46.97 (s); 48.50 (s); 51.53 (q, $2 \times \text{int.}$); 51.71 (q); 51.77 (q, $2 \times \text{int.}$); 52.32(q); 53.59 (d); 54.05 (d); 56.59 (d); 58.26 (s); 58.97 (q); 63.65 (t); 68.95 (t); 70.48 (t); 70.51 (t); 70.57 (t); 71.88 (t); 74.72 (d); 82.51 (s); 91.24 (d); 102.10 (s); 103.52 (s); 163.44 (s); 163.66 (s); 170.45 (s); 171.48 (s); 171.70 (s); 171.89 (s); 172.69 (s); 172.89 (s); 173.47 (s); 173.85 (s); 175.22 (s); 175.54 (s); 176.17 (s). ESI-MS (pos. MeCN/H₂O 1:1; calc. for $C_{60}H_{85}CoN_6O_{17}$: 1221.31): 1194.6 (100, $[M-CN]^+$), 584.6 (5, $[M-CN]^{2+}$).

 $Co\alpha(or\ Co\beta)$ -Aqua- $Co\beta(or\ Co\alpha)$ - $(cyano-\kappa C)$ - N^c -(10-oxo-12,15,18-trioxa-9-azanonadec-1-yl)cob(III)yrinic Acid-c-amide a,b,d,e,f,g-Hexamethyl Ester Perchlorate (8a). A 30 % HClO₄ soln. (90 ml) and 7a (1.5 g, 1.1 mmol) in CH₂Cl₂ (100 ml) were sonicated for 15 min under periodic evacuation (3×) to eliminate HCN. The aq. phase was extracted with CH2Cl2 (3×150 ml), the combined org. phase washed with H2O (80 ml) and evaporated, and the residue dissolved in CH2Cl2 (4 ml) and precipitated with Et2O/hexane 1:2 (100 ml). The precipitate was dried under high vacuum to give 1.53 g (95%) of 8a. Brownish red powder. UV/VIS ($c = 1.238 \cdot 10^{-5} \text{ M}, \text{CH}_2\text{Cl}_2$): 235 (19789), 270 (7100), 352 (10255), 405 (2524), 487 (3944), 523 (3392). IR (CHCl₃): 3120w, 2980m, 2960vs, 2940s, 2140w, 1790w, 1740vs, 1660vs, 1580vs, 1490s, 1440vs, 1380s, 1260s, 1050-1200s, 1020m, 910vs, 800w, 700vs, 650vs, 620m. H-NMR (500 MHz): 1.41-1.60 (m, superimposed 1.19 (s), 1.34 (s), 1.38 (s), 1.39 (s), 1.46 (s), 1.54 (s), total 27 H); 1.60-1.96 (m, superimposed 1.73 (s), 1.76 (s), 1.91 (s), total 7 H); 1.90-2.45 (m, superimposed 2.23 (s), 2.32 (s), 2.35 (s), 2.39 (s), total 16 H); 2.50-2.80 (m, total 9 H); 3.02-3.11 (m, 1 H); 3.18-3.40 (m, superimposed 3.36 (s), total 7 H); 3.36 (s, 3 H); 3.52-3.58 (m, 2 H); 3.60-3.76 (m, superimposed 3.61 (s), 3.63 (s), 3.64 (s), 3.69 (s), 3.70 (s), 3.71 (s), 3.73 (s), 3.74 (s), total 16 H); 3.78 – 4.20 (m, superimposed 3.79 (s), 3.80 (s), total 8 H); 4.12, 4.15 (2s, 2 H); 6.36, 6.42 (2s, 1 H); 6.75, 6.06, 7.71, 8.08 (4m, 2 H). LSI-MS (calc. for $C_{67}H_{103}CICoN_{7}O_{22}$: 1452.98): 1451 (3, M^+), 1352 (14, $[M-CIO_4]^+$), 1334 (65, $[M-H_2O-CIO_4]^+$), 1308 (100, [M - H₂O - CN - CIO₄]⁺), 1293 (3), 1149 (5), 963 (20), 802 (5), 473 (4), 309 (14). ESI-MS (pos., MeCN/H₂)1:1, 2% formic acid): 1334 (100, $[M^+ - H_2O - ClO_4]^+$), 1334 (6), 1064 (6).

Coα(or Coβ)-Aqua-Coβ(or Coα)-(cyano-κC)cob(III) yrinic Acid a,b,d,e,f,g-Hexamethyl c-(5-Oxo-4,7,10,13-tetraoxatetradec-1-yl) Ester Perchlorate (8b). As described for 8a, with 7b (450 mg, 0.345 mmol), CH₂Cl₂ (50 ml), and 30% HClO₄ soln. (40 ml). The residue was dissolved in CH₂Cl₂/MeOH 10:1 (10 ml) and injected into hexane (100 ml). The precipitation procedure was repeated twice: 8b (448 mg, 93%). Brownish red powder. UV/VIS ($c = 3.0373 \cdot 10^{-5}$ M, CH₂Cl₂): 232 (sh, 29080), 324 (14480), 356 (sh, 18350), 406 (8420), 484 (7700). IR (CHCl₃): 3500–3100w, 2990s, 2940m, 2360w, 1740vs, 1638w, 1585s, 1500s, 1445s, 1360m, 1240vs, 1200s, 1140m, 1050m, 1020w, 860w. ¹H-NMR (500 MHz): 1.10–1.70 (m, total 21 H); 1.71–2.05 (m, 3 H); 2.12–2.40 (m, superimposed 2.26 (s), 2.32 (s), total 15 H); 2.45–2.76 (m, 10 H); 2.95–3.07 (m, 1 H); 3.27–3.58 (m, superimposed 3.30 (d), total 4 H); 3.46–3.50 (m, 2 H); 3.52–3.72 (m, total 25 H); 4.01–4.36 (m, superimposed 4.09 (s) and 4.16 (t),

total 7 H); 4.27 (d, 1 H); 6.47 (2s, 1 H). ESI-MS (pos., MeCN/H₂O 1:1, 2% formic acid; calc. for $C_{62}H_{91}CICoN_5O_{24}$: 1384.82): 1266.7 (10, [$M-H_2O-CIO_4$]⁺), 645.1 (100), 634.1 (30), 620.7, 545.2 (60). ESI-MS (pos., MeCN/H₂O 1:1, 2% LiClO₄): 1372.8 (10, [M+Li]⁺), 1266.7 (100, [$M-H_2O-CIO_4$]⁺), 637.1 (85, [$M-H_2O-CIO_4+Li$]²⁺).

Coα(or Coβ)-Aqua-Coβ(or Coα)-(cyano-κC)cob(III) yrinic Acid-c-{2-{2-(2-Methoxyethoxy)ethoxyl}ethyl}} a,b,d,e,f,g-Hexamethyl Ester Perchlorate (8c). As described or 8a, with 7c (280 mg, 0.229 mmol): 8c (290 mg, 96%). Dark-red powder. UV/VIS ($c=3.81\cdot10^{-5}$ M, CH₂Cl₂): 234 (sh, 34120), 275 (13960), 327 (14800), 356 (24030), 406 (7435), 488 (9520). IR (CHCl₃): 3500–3100w, 2990s, 2940m, 1740vs, 1640s, 1585s, 1500s, 1450s, 1355m, 1240vs, 1200s, 1140m, 1050m, 860w. ¹H-NMR (300 MHz): 1.15–1.68 (m, overlapped 1.19 (s), 1.41 (s), 1.43 (s), 1.48 (s), 17 H); 1.72–2.00 (m, 6 H); 2.00–2.42 (m, overlapped 2.30 (s), 2.37 (s), 2.40 (s), 14 H); 2.48–2.98 (m, 11 H); 3.40–3.48 (m, 4 H), 3.63–3.80 (m, with overlapping s, 27 H); 4.00–4.39 (m, 4 H); 6.52, 6.63 (2s, 1 H). ESI-MS (pos. MeCN/H₂O 1:1); calc. for C₅₉H₈₇ClCoN₅O₂₂: 1312.75): 1194.6 (100, [m – H₂O – ClO₄]²⁺), 597.8 (30, [m + H – H₂O – ClO₄]²⁺), 584.78 (30, [m – H₂O – CN – ClO₄]²⁺).

N°-(10-Oxo-12,15,18-trioxa-9-azanonadec-1-yl)-Coβ-(perchlorato)cob(II)yrinic Acid-c-amide a,b,d,e,f,g-Hexamethyl Ester (9a). A soln. of 8a (1.5 g, 1.1 mmol) in $\rm H_2O/MeOH~1:1$ (50 ml) was sonicated for 15 min under Ar, treated with NaBH₄ (0.95 g; 25.07 mmol) in portions, and stirred for 20 min. Upon addition of 30% HClO₄ soln. (20 ml), the colour turned immediately from brownish to orange. After evaporation and addition of a phosphate buffer (0.5m, pH 7; 50 ml), the soln. was extracted with CH₂Cl₂ (300 ml) to yield a dark-orange powder which was dissolved in MeOH (2–3 ml) and precipitated by hexane. The crude 9a was dried under high vacuum (150 mg, 81%). UV/VIS ($c = 5.68 \cdot 10^{-5}$ M, CH₂Cl₂): 230 (19373), 316 (7044), 350 (sh, 9510), 416 (1162), 500 (3751), 516 (3698). IR (CHCl₃): 3720w, 3640w, 3020s, 2980s, 2940s, 2920w, 1740vs, 1680m, 1580m, 1540s, 1520s, 1440vs, 1400m, 1210–1300vs, 1110m, 630m. LSI-MS (calc. for C₆₆H₁₀₁ClCoN₆O₂₁: 1408.95): 1307 (40, [M – ClO₄]⁺), 963 (10), 890 (8).

Reduction of **8b**. NaBH₄ (0.95 g, 25.07 mmol) was added in portions to degassed H₂O/MeOH 5:1 (15 ml) at -6° under Ar. After addition of **8b** (5 mg, 0.004 mmol), the colour turned from red to green and changed immediately to orange when degassed, cooled 30%. HClO₄ soln. (20 ml) was added. After addition of phosphate buffer (1m, pH 7; 20 ml), the aq. phase was extracted with CH₂Cl₂ (80 ml) and the combined org. phase washed with H₂O (160 ml) and 1% NaClO₄ soln. (160 ml), dried (Na₂SO₄), and evaporated. The product mixture (3 mg) was dried under high vacuum. UV/VIS ($c = 7.6 \cdot 10^{-5}$ m, CH₂Cl₂): 230 (sh, 17443), 268 (sh, 18418), 316 (sh, 21547), 409 (6576), 470 (10407). IR (CHCl₃): 3440w, 2980vs, 2920s, 1740vs, 1580s, 1505s, 1445vs, 1350s, 1290s, 1200m, 630m. ESI-MS (pos. MeCN/H₂O 1:1, 2% formic acid; calc. for C_{6.1}H_{8.9}ClCoN₄O_{2.3}: 1340.78): 1240.8 (100, [$M - \text{ClO}_4$]⁺), 1080.5 (2, [by-product]⁺). CV (reversible waves): in MeCN (0.1m LiClO₄): E_p^{red} (Co¹/Co¹) = - 0.75 V, E_p^{reg} (Co¹/Co¹) = - 0.68 V.

Coβ-(Perchlorato)cob(II) yrinic Acid c-{2-[2-(2-Methoxyethoxy)ethoxy]ethyl} a,b,d,e,f,g-Hexamethyl Ester (9c). To NaBH₄ (130 mg, 3.4 mmol) in MeOH (40 ml) under Ar a soln. of 8c (150 mg, 0.11 mmol) in degassed MeOH (4 ml) was added at 0° (\rightarrow green). After 10 s, degassed 30% HClO₄ soln. (20 ml) was added, and the colour turned immediately to orange. After addition of phosphate buffer (0.1m, pH 7, 50 ml), the aq. phase was extracted with CH₂Cl₂ (150 ml), the combined org. phase washed with H₂O (200 ml), 1% NaClO₄ soln. (200 ml), dried, and evaporated, and the residue dissolved in CH₂Cl₂ and precipitated with hexane. The precipitate was dissolved in CH₂Cl₂ (10 ml), and, after evaporation, dried under high vacuum: 130 mg (89%) of 9c. UV/VIS ($c = 3.3 \cdot 10^{-5}$ M, CH₂Cl₂): 232 (sh, 23969), 268 (sh, 21240), 318 (sh, 28422), 409 (8484), 470 (13350). IR (CHCl₃): 3600–3100w, 2980s, 2915s, 1750vs, 1580s, 1495s, 1440s, 1360vs, 1100s, 630m. ESI-MS (pos., Me CN/H₂O 1:1; calc. for C₅₈H₈₅ClCoN₄O₂₁. 1268.72): 1203.6 (10, [$M - \text{ClO}_4 + \text{Cl}]^+$), 1168.7 (100, [$M - \text{ClO}_4]^+$). CV (reversible waves): MeCN (0.1m LiClO₄), $E_p^{\text{red}}(\text{Co}^{\text{I}}/\text{Co}^{\text{I}}) = - 0.62$ V. $E_p^{\text{red}}(\text{Co}^{\text{I}}/\text{Co}^{\text{I}}) = - 0.66$ V; in MeOH (0.1m LiClO₄), $E_p^{\text{red}}(\text{Co}^{\text{I}}/\text{Co}^{\text{I}}) = - 0.62$ V.

N-(8-Aminooctyl)-2-[2-(2-methoxyethoxy]ethoxy]acetamide (2). A soln. of dichloro(methoxy)methane (1.59 g, 13.7 mmol) in CH₂Cl₂ (15 ml) was slowly and dropwise added to a mixture of octane-1,8-diamine (4; 3.06 g, 21 mmol) and 2-[2-(2-methoxyethoxy)ethoxy]acetic acid (1; 1.88 g, 10.6 mmol) in CH₂Cl₂ (25 ml) at -7° under N₂. After 4 h, H₂O (40 ml) was added, the org. phase washed with H₂O (3 × 50 ml) and evaporated, and the residue submitted to FC (MeOH/AcOEt/CH₂Cl₂ 8:1:1, 1 % Et₃N): 2 (1.7 g, 40 %). White powder. R_f 0.15 (MeOH/AcOEt/CH₂Cl₂ 8:1:1, 1 % Et₃N) (ninhydrin)). IR: 3440s, 3360s, 2940s, 2890vs, 2840s, 1740s, 1670vs, 1535vs, 1460s, 1360m, 1340s, 1280m, 1240s, 1120vs, 1030m, 855w, 580w. ¹H-NMR: 1.31 (br. s, 8 H); 1.34–1.59 (2m, superimposed 1.54 (s), total 6 H); 2.67 (dt, J = 2.9, 6.9, 2 H); 3.23–3.28 (m, 2 H); 3.37 (s, 3 H); 3.54–3.57 (m, 2 H); 3.58–3.68 (m, 6 H); 3.96 (s, 2 H); 7.12 (s, 1 H). ¹³C-NMR: 26.79 (t); 26.87 (t); 29.25 (t); 29.36 (t); 29.60 (t); 33.62 (t); 38.84 (t); 42.20 (t); 58.90 (q); 70.16 (t); 70.38 (t); 70.47 (t); 70.94 (t); 71.84 (t); 169.7 (s). MS: 304

 $(4, M^+)$, 275 (5), 273 (6), 260 (7), 201 (66), 184 (8), 172 (25), 155 (11), 142 (41), 133 (9), 128 (16), 114 (92), 100 (62), 8 (51), 72 (47), 59 (100), 44 (32), 30 (76). HR-MS: 304.233343 ($C_{15}H_{32}O_4N_2^+$; calc. 304.236208).

3-Hydroxypropyl 2-[2-(2-Methoxyethoxy)ethoxy]acetate (3). A mixture of 1 (2.00 g, 11.2 mmol) and dichloro(methoxy)methane (1.66 g, 14.5 mmol) was stirred at 35° for 24 h under Ar. Excess dichloro-(methoxy)methane was evaporated, the acyl chloride added dropwise to propane-1,3-diol (5; 8.82 g, 89.6 mmol) and Et₃N (1 ml) at 0°, and the mixture stirred overnight at r.t. CH_2Cl_2/H_2O 1:1 (80 ml) was added to the mixture, the org. layer separated, and the aq. layer extracted with CH_2Cl_2 (90 ml). The combined org. phase was washed with Na_2CO_4 soln. (100 ml) and brine (100 ml), dried (Na_2SO_4), and evaporated. The residue was submitted to FC (AcOEt/MeOH 4:1): 3 (1.44 g, 55%). R_f 0.48 (AcOEt/MeOH 4:1). IR: 3690w, 3630m, 3600–3200m, 2920vs, 2900vs, 1750vs, 1630w, 1460s, 1430m, 1400m, 1360m, 1280s, 1240vs, 1180–1080vs, 1050vs, 980s, 940s, 860s. ¹H-NMR (300 MHz): 1.85–1.93 (m, 2 H); 2.30 (br. s, 1 H); 3.37 (s, 3 H); 3.54–3.58 (m, 2 H); 3.63–3.75 (m, 8 H); 4.14 (s, 2 H); 4.31 (t, J = 6.14, 2 H). ¹³C-NMR (75 MHz): 31.55 (t); 58.98 (q); 59.06 (t); 61.91 (t); 68.68 (t); 70.50 (t); 70.64 (t); 70.94 (t); 71.88 (t); 170.80 (s). MS: 236 (1, M, $C_{10}H_{20}O_6^*$), 204 (1), 179 (4), 161 (10), 133 (12), 117 (18), 103 (54), 89 (32), 75 (14), 59 (100), 45 (60), 31 (40).

REFERENCES

- [1] J. Rétey, Angew. Chem. 1990, 102, 373; ibid., Int. Ed. Engl. 1990, 29, 355.
- [2] R. Finke, in 'Molecular Mechanisms in Bioorganic Processes', Eds. C. Bleasdale and B. T. Golding, Royal Society of Chemistry, London, 1990, p. 245-280.
- [3] J. M. Pratt, Chem. Soc. Rev. 1985, 14, 161.
- [4] B. Beatrix, O. Zelder, F. K. Kroll, G. Örlygsson, B. T. Golding, W. Buckel, Angew. Chem. 1995, 107, 2573.
- [5] B. Köhler, M. Knauer, W. Clegg, M. R. J. Elsegood, B. T. Golding, J. Rétey, Angew. Chem. 1995, 107, 2580; ibid., Int. Ed. Engl. 1995, 34, 2389.
- [6] Y. Murakami, Y. Hisaeda, T. Ohno, J. Chem. Soc., Perkin Trans. 2 1991, 405.
- [7] A. Wolleb-Gygi, T. Darbre, V. Siliegovic, R. Keese, J. Chem. Soc., Chem. Commun. 1994, 835.
- [8] T. Darbre, A. Wolleb, R. Keese, V. Šiljegovic, Helv. Chim. Acta 1996, 79, 2100.
- [9] T. Darbre, R. Keese, V. Šiljegovic, J. Chem. Soc., Chem. Commun. 1996, 561.
- [10] F. Vögtle, E. Weber, 'Crown Ethers Complexes and Selectivity', in 'The Chemistry of the Ether Linkage', Supplement E, part 1, Ed. S. Patai, Wiley, London, 1981, p. 59.
- [11] 'Phase Transfer Catalysts, Properties and Applications', Merck, 1987.
- [12] M. W. Hosseini, J. M. Lehn, J. Am. Chem. Soc. 1987, 109, 7047.
- [13] M. Inouye, T. Konishi, K. Isagawa, J. Am. Chem. Soc. 1993, 115, 8091.
- [14] L. Heslinga, J. F. Arens, Recl. Trav. Chim. Pays-Bas 1957, 76, 982.
- [15] M. K. Dhaon, R. K. Olsen, K. Ramasamy, J. Org. Chem. 1982, 47, 1962.
- [16] A. Hassner, L. R. Krepske, V. Alexanian, Tetrahedron 1978, 34, 2069.
- [17] M. Przybylski, M. O. Glockner, Angew. Chem. 1996, 108, 878; ibid., Int. Ed. Engl. 1996, 35, 806.
- [18] E. Schenker, Angew. Chem. 1961, 73, 81; M. S. Brown, H. Rappoport, J. Org. Chem. 1963, 28, 3261.
- [19] C. Caderas, Ph. D. Thesis, ETH Zürich, 1987, Nr. 7822.
- [20] V. Siljegovic, Ph. D. Thesis, University of Bern, 1995.
- [21] R. L. Shriner, F. W. Newman, Org. Synth. 1955, Coll. Vol. III, 73.

Received January 19, 1998